K-2

Maharashtra State Board of Technical Education, Mumbai LABORATORY PLANNING (LP)

Academic Year: 2025-26 (Even)

Institute Name: K. K. Wagh Polytechnic, Nashik MSBTE Code: 0078

Program and Code: Electrical Engineering (EE)

Course Name: Energy Conservation & Audit

Class: TYEE- Tesla

Semester: 6th

Scheme: K

Course Code & Abbr.: 316327 (ECA)

Name of Faculty: Mr. H. M. Kakad

Course Index: 310

Learning Hrs. 60

• Teaching-Learning & Assessment Scheme:

	Course Title &	Course	Learning Scheme					п	Assessment Scheme											
C			Actual Contact Hrs/Week		[I dits	1;;	Theory			Based on LL & TSL Practical			Based on SL						
Course Code	Abbr	Category	CL	TL	LL	SLH	NLH	Credits	aper Du (Hrs.	FA TH	SA TH	Total		FA-PR		SA-PR		SLA		Total Marks
									P	Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
334322	Energy Conservation & Audit-DMT	DSC	4	-	2	2	8	4	3	30	70	100	40	25	10	20#	10	25	10	150

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS – Indian Knowledge System, SLA - Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

COURSE LEVEL LEARNING OUTCOMES (COS)

By learning course DC Machines & Transformers (DMT-314322) Second Year students will be able to achieve & demonstrate the following COs on completion of course based learning.

- CO1 Interpret energy conservation policies in India.
- CO2 Implement energy conservation techniques in electrical machines.
- CO3 Apply energy conservation techniques in electrical installations.
- CO4 Use Co-generation and relevant tariff for reducing losses in facilities.
- CO5 Carryout energy audit for electrical system.

• COs, Practical Laboratory Learning Outcome (LLOs) and Mapping:

Pr. No	COs	LL O	Name of Experiments/Assignment/ Sheet/ Job/ Project Activity	Planno A/	Actual date of Perfor	Rmk	
			Job/ Project Activity	From	То	mance	
1	CO1	LLO 1.1	Identification of star labelled electrical appliances/equipment and compare data sheets of various star labelled ratings.	A- 17-12-2025 B- 15-12-2025 C- 16-12-2025	A- 17-12-2025 B- 15-12-2025 C- 16-12-2025		
2	CO1	LLO 2.1	Determination of reduction in power consumption in star mode operation of 3 phase Induction motor compared to delta mode.	A- 24-12-2025 B- 22-12-2025 C- 23-12-2025	A- 24-12-2025 B- 22-12-2025 C- 23-12-2025		
3	CO1	3.1	Performance of load test on three phase induction motor for different loading conditions and plot the curve.	A- 31-12-2025 B- 29-12-2025 C- 30-12-2025	A- 31-12-2025 B- 29-12-2025 C- 30-12-2025		

			or any other equivalent software.		
15	CO3	LLO 21.1	Energy audit using energy audit software such as Safety Culture (formally iAuditor), Energy CAP	A- 25-03-2026 B- 23-03-2026 C- 24-03-2026	A- 25-03-2026 B- 23-03-2026 C- 24-03-2026
15		20.1	consumption using DOL, star delta and soft starter in a three-phase induction motor.	B- 16-03-2026 C- 17-03-2026	B- 16-03-2026 C- 17-03-2026
14	CO3	LLO	Comparison of energy	C- 10-03-2026 A- 18-03-2026	C- 10-03-2026 A- 18-03-2026
13	CO3	LLO 19.1	Preparation of Energy audit report of electrical department.	A- 11-03-2026 B- 09-03-2026	A- 11-03-2026 B- 09-03-2026
12	963	18.1	questionnaire for the given facility	B- 02-03-2026 C- 03-03-2026	B- 02-03-2026 C- 03-03-2026
12	CO3	LLO	factor for given case. Preparation of Energy audit		C- 24-02-2026 A- 04-03-2026
11	CO3	LLO 17.1	Estimation of Energy saved by improving power factor and load	A- 25-02-2026 B- 23-02-2026	A- 25-02-2026 B- 23-02-2026
10	CO3	LLO 16.1	Tariff for residential consumer for reducing the electricity bill.	A- 18-02-2026 B- 16-02-2026 C- 17-02-2026	A- 18-02-2026 B- 16-02-2026 C- 17-02-2026
		15.1	for reducing the electricity bill.	B- 09-02-2026 C- 10-02-2026	B- 09-02-2026 C- 10-02-2026
9	CO2	13.1 LLO	reducing the electricity bill. Tariff for commercial consumer	B- 02-02-2026 C- 03-02-2026 A- 11-02-2026	B- 02-02-2026 C- 03-02-2026 A- 11-02-2026
8	CO2	LLO	Tariff for industrial consumer for	A- 04-02-2026	A- 04-02-2026
		9.1	by replacement of lamps in a classroom / laboratory by energy	B-26-01-2026 C- 27-01-2026	B-26-01-2026 C- 27-01-2026
7	CO2	LLO	ballast and LED lamps by direct measurement. Comparison of reduction in power	A- 28-01-2026	A- 28-01-2026
6	CO2	LLO 8.1	Comparison of power consumption of different types of Tube Light with choke, electronic	A- 21-01-2026 B- 19-01-2026 C- 20-01-2026	A- 21-01-2026 B- 19-01-2026 C- 20-01-2026
5	CO2	7.1	Power factor improvement using static capacitor.	B- 12-01-2026 C- 13-01-2026	B- 12-01-2026 C- 13-01-2026
	CO2	ШО	transformer and the other one comprises of two single phase transformers in parallel operation. (For the same load)	A- 14-01-2026	A- 14-01-2026
4	CO2	6.1	Comparison of energy conserved in two identical transformers where one is a single-phase	A- 07-01-2026 B- 05-01-2026 C- 06-01-2026	A- 07-01-2026 B- 05-01-2026 C- 06-01-2026

ASSESSMENT METHODOLOGIES/TOOLS

A. Formative assessment (Assessment for Learning)

- 1. Two-unit tests, each worth 30 marks, will be conducted, and the average of the two tests will be considered
- 2. For formative assessment of laboratory learning 25 marks:

Each practical will be assessed considering appropriate % weightage to process and product and other instructions of assessment. and the average of all practical will be considered.

B. Summative Assessment (Assessment of Learning) (SA-TH)

- 1. End semester summative assessment of 25 marks for laboratory learning.
- 2. End semester assessment of 70 marks through offline mode of examination.

SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING /SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

- 3. Collect electricity bill of your institute and suggest suitable measures for energy conservation and reduction of energy bill.
- 4. Prepare Energy conservation chart using different luminaries.
- 5. Prepare an energy audit report of your department/Institute/Workshop using energy audit instruments.
- 6. Visit MEDA website and enlist various energy conservation schemes. Prepare a presentation highlighting the salient features of any one scheme. (objectives, entitlement, methodology and financial assistance etc.)
- 7. Carry out a case study of at least two nearby industries and prepare a report on energy conservation measures adopted by them.
- 8. Carry out internet survey (BEE) to collect information and prepare a report related to any two energy conservation projects.
- 9. Poster preparation and competition on energy conservation (Visit MEDA website).

Mr. H. M. Kakad (Name & Signature of Staff)

Prof. S. B. Pawar (Name & Signature of HOD)